Reducing CO2 emissions is becoming a particularly important goal for motorcycle manufacturers. A fully electric transition still seems far away, given the difficulties in creating an electric motorcycle with an acceptable range and mass. This opens up opportunities for the application of hybrid powertrains in motorcycles. Managing mass, cost, and volume is a challenging issue for motorcycles; therefore, an MHEV architecture represents an interesting opportunity, as it is a low-complexity and low-cost solution. Firstly, in this work, an adequate sizing of the powertrain components is studied for the maximum reduction in fuel consumption. This is performed by analyzing many different system configurations with different hybridization ratios. A 1D simulation of the motorcycle traveling along the homologation cycle (WMTC) is performed, and the powerunit use strategy is optimized for each configuration using the Dynamic Programming technique. The results are analyzed in order to highlight the impact of kinetic energy recovery and engine load-point shifting on fuel consumption reduction. The results show the applicability of MHEV technology to road motorcycles, thus providing a useful tool to analyze the cost/benefit ratio of this technology. The developed methodology is also suitable for different vehicles once a specific test cycle is known.