Conventional calibration-free wavelength modulation spectroscopy generally requires complex absorption spectrum simulations in combination with spectral databases and laser modulation parameters, placing high demands on the accuracy of a priori spectral parameters and hardware parameters. Meanwhile, inappropriate initial values can increase the computation time and even lead to local optimal solutions. In order to improve the computational efficiency, a rapid calibration-free wavelength modulation spectroscopy to obtain the integrated absorbance is presented in this work. First, this method is computationally efficient, requiring only algebraic calculations by using the 2nd, 4th, and 6th harmonic center peak height parameters to obtain the integrated absorbance, eliminating the need for computationally intensive harmonic fitting calculations. Secondly, this method has low dependence on the spectral database, requiring only line intensity and low-state energy level spectral parameters. Finally, this method is highly adaptable and does not require scanning the complete absorption spectral line shape, which solves the problem of incomplete harmonic signals caused by the conventional method at high temperature and high pressure due to the broadening of the absorption spectral line. This method has previously been used only for line-of-sight measurements at low-frequency experimental signals in stable environments, and for calculating the integrated absorbance at average temperature, concentration and pressure states. In this work, the method is applied to non-uniform complex combustion field tomography and combined with the proposed tomographic system to achieve online reconstructing temperature and concentration distributions. The accuracy and computational efficiency of the method in obtaining the integrated absorbance are verified by numerical simulations and experiments on the butane burner flame. The results show that the presented method is consistent with the reconstructed distribution compared with the conventional wavelength modulation method, with a maximum relative deviation of only 0.94% from the measurement and 3.5% from the thermocouple measurement, verifying the accuracy of the method. The computational efficiencies of the two methods for obtaining the integrated absorbance are analyzed. The average calculation time per path is 0.15 s for the present method and 21.10 s for the conventional method. The calculation efficiency of the present method is at least two orders of magnitude higher than that of the conventional method, which provides a fast and reliable research method and technical means to realize the industrial-grade online reconstruction of temperature and concentration distribution of combustion fields.
Read full abstract