Mycobacterium tuberculosis is a pathogenic bacterium that is parasitic in macrophages and show high adaptation to the host's immune response. It can also trigger a complex immune response in the host. This relies on proteins encoded by a series of M. tuberculosis-encoded virulence genes. We found that the M. tuberculosis Rv3435c gene is highly conserved among pathogenic mycobacteria, and might be a virulence gene. To explore the gene function of Rv3435c, we used Mycobacterium smegmatis to construct a recombinant mycobacterium expressing Rv3435c heterologously. The results that Rv3435c is a cell wall-related protein that changes bacterial and colony morphology, inhibits the growth rate of recombinant mycobacteria, and enhances their resistance to various stresses. We also found that the fatty acid levels of the recombinant strain changed. Simultaneously, Rv3435c can inhibit the expression and secretion of inflammatory factors and host cell apoptosis, and enhance the survival of recombinant bacteria in macrophages. Experimental data indicated that Rv3435c might play an important role in Mycobacterium tuberculosis infection.
Read full abstract