Alarmins are classified by their release from damaged or ruptured cells. Many alarmins have been found to increase vascular tone and oppose endothelium-dependent dilatation (EDD). Interleukin (IL)-33 plays a prominent role in lung injury and can be released during vascular injury and in chronic studies found to be cardioprotective. Our recent work has implicated IL-33 in acute vascular dysfunction following inhalation of engineered nanomaterials (ENM). However, the mechanisms linking IL-33 to vascular tone have not been interrogated. We therefore aimed to determine whether IL-33 directly influenced microvascular tone and endothelial function. Isolated feed arteries and in vivo arterioles from male and female Sprague-Dawley rats were used to determine direct vascular actions of IL-33. Mesenteric feed arteries and arterioles demonstrated reduced intraluminal diameters when treated with increasing concentrations of recombinant IL-33. IL-33 activated extracellular signal regulated kinase (ERK)1/2 of rat aortic smooth muscle cells but not phosphorylation of myosin light chain kinase. This suggested IL-33may sensitize arterioles to Ca2+-mediated responses. Indeed, IL-33 augmented the myogenic- and phenylephrine-induced vasoconstriction. Additionally, incubation of arterioles with 1ng IL-33 attenuated ACh-mediated EDD. Mechanistically, in human aortic endothelial cells, we demonstrate that IL-33-mediated ERK1/2 activation leads to inhibitory phosphorylation of serine 602 on endothelial nitric oxide synthase. Finally, we demonstrate that IL-33-ERK1/2 contributes to vascular tone following two known inducers of IL-33; ENM inhalation and the rupture endothelial cells. The present study provides novel evidence that IL-33 increases vascular tone via canonical ERK1/2 activation in microvascular smooth muscle and endothelium. Altogether, it is suggested IL-33 plays a critical role in microvascular homeostasis following barrier cell injury. KEY POINTS: Interleukin (IL)-33 causes a concentration-dependent reduction in feed artery diameter. IL-33 acts on vascular smooth muscle cells to augment Ca2+-mediated processes. IL-33 causes inhibitory phosphorylation of endothelial nitric oxide synthase and opposes endothelium-dependent dilatation. Engineered nanomaterial-induced lung injury and endothelial cell rupture in part act through IL-33 to mediate increased vascular tone.
Read full abstract