Objective: In practical applications, an image of a face is often partially occluded, which decreases the recognition rate and the robustness. Therefore, in response to this situation, an effective face recognition model based on an improved generative adversarial network (GAN) is proposed. Methods: First, we use a generator composed of an autoencoder and the adversarial learning of two discriminators (local discriminator and global discriminator) to fill and repair an occluded face image. On this basis, the Resnet-50 network is used to perform image restoration on the face. In our recognition framework, we introduce a classification loss function that can quantify the distance between classes. The image generated by the generator can only capture the rough shape of the missing facial components or generate the wrong pixels. To obtain a clearer and more realistic image, this paper uses two discriminators (local discriminator and global discriminator, as mentioned above). The images generated by the proposed method are coherent and minimally influence facial expression recognition. Through experiments, facial images with different occlusion conditions are compared before and after the facial expressions are filled, and the recognition rates of different algorithms are compared. Results: The images generated by the method in this paper are truly coherent and have little impact on facial expression recognition. When the occlusion area is less than 50%, the overall recognition rate of the model is above 80%, which is close to the recognition rate pertaining to the non-occluded images. Conclusions: The experimental results show that the method in this paper has a better restoration effect and higher recognition rate for face images of different occlusion types and regions. Furthermore, it can be used for face recognition in a daily occlusion environment, and achieve a better recognition effect.
Read full abstract