Calcareous sand is the main fill material for island reclamation projects, but untreated calcareous sand might not be used as a reclamation fill due to its poor mechanical properties. Microbial induced calcite precipitation (MICP) was directly used to consolidate calcareous sands. One-dimensional sand column tests were conducted to identify the optimized solutions and to investigate the effects of cement solution concentration, relative density, and consolidation frequencies on the permeability and mechanical properties of MICP-treated calcareous sands. Finally, three-dimensional model tests were carried out to investigate the effective consolidation range of microbially treated calcareous sands. The results show that the MICP-treated calcareous sand shows a reduction in the permeability of the sample, while the calcium carbonate cementation and its filling effect improves the mechanical properties of the soil. The one-dimentional test results show that the effective values for cement solution concentration, relative density, and consolidation frequencies range from 0.5 mol/L to 1.5 mol/L, 30%–70%, and 5–15 times. The consolidation frequencies have the greatest influence on the permeability and strength properties of the treated calcareous sand. A quadratic polynomial regression model for permeability and strength was established through response surface analysis, and the regression model proved to be highly accurate and reliable through testing. In three-dimentional tests, the consolidation range tends to move downwards in a trapezoidal shape, showing a "big bottom and small top" pattern, with a consolidation range of approximately 34 times the diameter of the pipe. This study serves as a reference for selecting consolidation parameters for subsequent tests and applications of MICP-treated calcareous sands.
Read full abstract