Understanding the influence of microbial taxa and functions on soil carbon (C) and nitrogen (N) cycling, particularly concerning soil aggregate sizes, is crucial for ecosystem management. This study examines the taxonomic and functional dynamics of soil bacterial communities within different aggregate sizes over time. Soil samples from a reclamation forest on the Loess Plateau in North China were collected across reclamation ages of 0, 3, 18, and 28 years. Soil aggregates were categorized into large macro-aggregates (>2000 μm), small macro-aggregates (250–2000 μm), and micro-aggregates (<250 μm) using a modified dry-sieving method. Soil aggregate stability, C and N concentrations, newly derived plant C, enzyme activities, bacterial communities, and functional genes in each aggregate fraction were systematically analyzed. There was a notable increase in soil aggregate stability and a higher proportion of large aggregates was found with increasing forest age. There were significant differences in bacterial community structures, particularly between micro-aggregates and large macro-aggregates and across different forest ages. Reclamation led to an increased abundance of copiotrophic bacterial taxa. Decreases in N-acquiring enzyme activity in micro-aggregates were contrasted by an increase in C, N, and phosphorus (P) acquisition activities in larger aggregates over time. Larger aggregates showed a faster recovery of C and N cycling genes accompanied by a significant enhancement in acetyl-CoA and ammonia oxidation processes, underscoring their importance in soil nutrient cycling. These results highlight the critical role of aggregate size in shaping microbial community structures and functions that influence soil C and N cycling during reclamation and provide new perspectives highlighting the significance of incorporating aggregate size considerations into soil management and reclamation strategies.
Read full abstract