Cavity optomechanical (COM) sensors, featuring efficient light–motion couplings, have been widely used for ultrasensitive measurements of various physical quantities ranging from displacements to accelerations or weak forces. Previous works, however, have mainly focused on reciprocal COM systems. Here, we propose how to further improve the performance of quantum COM sensors by breaking reciprocal symmetry in purely quantum regime. Specifically, we consider a spinning COM resonator and show that by selectively driving it in opposite directions, highly nonreciprocal optical squeezing can emerge, which in turn provides an efficient way to surpass the standard quantum limit which is otherwise unattainable for the corresponding reciprocal devices. Our work confirms that breaking reciprocal symmetry, already achieved in diverse systems well beyond spinning systems, can serve as a new strategy to further enhance the abilities of advanced quantum sensors, for applications ranging from testing fundamental physical laws to practical quantum metrology.