Aim This study was aimed to identify the potentially pathogenic gene variants that contribute to the etiology of the autosomal recessive renal tubular dysgenesis (RTD) in the aborted fetus. Methods Illumina infinium global screening array was used to analyze chromosome karyotype of the aborted fetus. The exomes of the aborted fetus and his parents were sequenced using the whole exome sequencing technology. The resulting variants from whole exome sequencing were filtered by basic and advanced biological information analysis and the candidate mutation was verified by Sanger sequencing. Results Trisomy in chromosome 10 was found in the aborted fetus. The exon heterozygous variant of c.963T > A (p.Y321X) (nonsense mutation) and intron heterozygous variant of c.492 + 1G > A (splicing site mutation) in REN was first identified and validated by Sanger sequencing. Moreover, the exon heterozygous variant of c.963T > A (p.Y321X) and intron heterozygous variant of c.492 + 1G > A was from the mother and father, respectively. Conclusion Our results reported the novel exon heterozygous variant of c.963T > A (p.Y321X) and intron heterozygous variant of c.492 + 1G > A in REN may contribute to autosomal recessive RTD, expanding our understanding of the causally relevant mutations for this disorder.
Read full abstract