Vasoconstrictors activate phospholipase C (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP(2)), leading to calcium mobilization, protein kinase C activation, and contraction. Our aim was to investigate whether PLC-delta(1), a PLC isoform implicated in alpha(1)-adrenoreceptor signaling and the pathogenesis of hypertension, is involved in noradrenaline (NA) or endothelin (ET-1)-induced PIP(2) hydrolysis and contraction. Rat mesenteric small arteries were studied. Contractility was measured by pressure myography, phospholipids or inositol phosphates were measured by radiolabeling with (33)Pi or myo-[(3)H]inositol, and caveolae/rafts were prepared by discontinuous sucrose density centrifugation. PLC-delta(1) was localized by immunoblot analysis and neutralized by delivery of PLC-delta(1) antibody. The PLC inhibitor U73122, but not the negative control U-73342, markedly inhibited NA and ET-1 contraction but had no effect on potassium or phorbol ester contraction, implicating PLC activity in receptor-mediated smooth muscle contraction. PLC-delta(1) was present in caveolae/rafts, and NA, but not ET-1, stimulated a rapid twofold increase in PLC-delta(1) levels in these domains. PLC-delta(1) is calcium dependent, and removal of extracellular calcium prevented its association with caveolae/rafts in response to NA, concomitantly reducing NA-induced [(33)P]PIP(2) hydrolysis and [(3)H]inositol phosphate formation but with no effect on ET-1-induced [(33)P]PIP(2) hydrolysis. Neutralization of PLC-delta(1) by PLC-delta(1) antibody prevented its caveolae/raft association and attenuated the sustained contractile response to NA compared with control antibodies. In contrast, ET-1-induced contraction was not affected by PLC-delta(1) antibody. These results indicate the novel and selective role of caveolae/raft localized PLC-delta(1) in NA-induced PIP(2) hydrolysis and sustained contraction in intact vascular tissue.
Read full abstract