This paper presents an advanced modular modeling approach for vertical vibration analysis of dynamic systems using the Generalized Receptance Coupling and Frequency-Based Substructuring (GRCFBS) method. The focus is on a four-DoF half-vehicle model comprising three key subsystems: front suspension, rear suspension, and the vehicle’s trimmed body. The proposed technique is designed to predict dynamic responses in reconfigurable systems across various applications, including automotive, robotics, mechanical machinery, and aerospace structures. By coupling the receptance matrices (FRFs) of individual vehicle modules, the overall system receptance matrix is efficiently derived in a disassembled configuration. Two generalized coupling methods, originally developed by Jetmundsen and D.D. Klerk, are employed to determine the complete vehicle’s receptance matrix from its subsystems. Validation is achieved by comparing the results with established methods, such as direct solution and modal analysis, demonstrating high accuracy and reliability for complex dynamic systems. This modular approach allows for the creation of reduced-order models focused on key measurement points without the need for detailed system representation. The method offers significant advantages in early-stage vehicle development, providing critical insights into system vibration behavior.
Read full abstract