Abstract Acer pentaphyllum Diels (Sapindaceae), a highly threatened maple endemic to the dry-hot valleys of the Yalong River in western Sichuan, China, represents a valuable resource for horticulture and conservation. This study presents the first chromosomal-scale genome assembly of A. pentaphyllum (~626 Mb, 2n = 26), constructed using PacBio HiFi and Hi-C sequencing technologies. Comparative genomic analyses revealed significant recent genomic changes through rapid amplification of transposable elements, particularly long terminal repeat retrotransposons, coinciding with the dramatic climate change during recent uplift of the Hengduan Mountains. Genes involved in photosynthesis, plant hormone signal transduction, and plant-pathogen interaction showed expansion and/or positive selection, potentially reflecting adaptation to the species’ unique dry-hot valley habitat. Population genomic analysis of 227 individuals from 28 populations revealed low genetic diversity (1.04 ± 0.97 × 10-3) compared to other woody species. Phylogeographic patterns suggest an unexpected upstream colonization along the Yalong River, while Quaternary climate fluctuations drove its continuous lineage diversification and population contraction. Assessment of genetic diversity, inbreeding, and genetic load across populations revealed concerning levels of inbreeding and accumulation of deleterious mutations in small, isolated populations, particularly those at range edges (TKX, CDG, TES). Based on these results, we propose conservation strategies, including the identification of management units and recommendations for genetic rescue. These findings not only facilitate the conservation of A. pentaphyllum but also serve as a valuable resource for future horticultural development and as a model for similar studies on other endangered plant species adapted to extreme environments.
Read full abstract