Single-molecule dynamic force spectroscopy (DFS) is a powerful tool for studying mechanical forces of molecular interactions. Recently, the important role of bond rebinding in DSF experiments was recognized, which intrigued mounting researches in this direction. In this work, we study how the bond rebinding influences the strength of single-molecular bonds using Brownian dynamics (BD) simulations and theoretical modeling. Our results show that bond rebinding significantly enhances the strength of single-molecular bond at ultralow loading rates. The rebinding behavior strongly depends on the loading stiffness, suggesting that the strength of single-molecular bond is not only dependent on its intrinsic property, but also the stiffness of loading device. By connecting our new model with conventional theories that did not consider the rebinding effect and are only applied to high loading rates, we propose a unified scheme to predict the rupture forces in a full range of loading rate in DSF experiments and simulations.
Read full abstract