Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.