The study explores a novel method to combat the Light and Elevated Temperature‐Induced Degradation (LeTID) in solar cell modules, which significantly reduces their efficiency and lifespan. This method involves applying alternating current (AC) of various waveforms (triangular, sinusoidal, and square) and frequencies (5 and 100 kHz) to boron‐doped p‐type passivated emitter rear contact (p‐PERC) solar cell modules. This approach effectively lowers the series resistance at the critical junction between the silver (Ag) contact and the silicon emitter layer of the PERC solar cell, thereby reducing charge recombination hindered by high resistance, especially at elevated temperatures. As a result, there is an improved flow of electrical charges, leading to decreased energy loss and increased solar cell efficiency. The study's findings indicate that a slow, smooth sinusoidal AC waveform at 100 kHz is particularly effective, restoring about 100% of the original performance of the panel. Moreover, oscillations at 5 kHz also show considerable efficacy, recovering more than 96% of the performance. The sinusoidal waveform is noted to surpass both triangular and square waveforms in recovery efficiency. This research highlights the use of high‐frequency AC electricity as a viable strategy to extend the lifespan and enhance the performance of solar panels.