We present large-scale quantum MonteCarlo simulation results on a realistic Hamiltonian of kagome-lattice Rydberg atom arrays. Although the system has no intrinsic disorder, intriguingly, our analyses of static and dynamic properties on large system sizes reveal emergent glassy behavior in a region of parameter space located between two valence bond solid phases. The extent of this glassy region is demarcated using the Edwards-Anderson order parameter, and its phase transitions to the two proximate valence bond solids-as well as the crossover towards a trivial paramagnetic phase-are identified. We demonstrate the intrinsically slow (imaginary) time dynamics deep inside the glassy phase and discuss experimental considerations for detecting such a quantum disordered phase with numerous nearly degenerate local minima. Our proposal paves a new route to the study of real-time glassy phenomena and highlights the potential for quantum simulation of a distinct phase of quantum matter beyond solids and liquids in current-generation Rydberg platforms.
Read full abstract