Photon counting detectors (PCDs) with energy discrimination capabilities have the potential to generate grayscale CT images with improved contrast-to-noise ratio (CNR) through optimal weighting of their spectral measurements. This study evaluates the CNR performance of grayscale CT projections and images generated from spectral measurements of PCDs using three energy-weighting strategies: pre-log weighting, post-log weighting, and material decomposition (MD) weighting. This study provides the expressions of optimal weights and maximum achievable CNR of these energy-weighting strategies, which only require the knowledge of detected bin counts and do not require information of PCD energy responses or imaging techniques. We defined and solved a generalized eigenvalue problem to obtain the maximum achievable CNR in the projection domain for low-contrast tasks using three energy-weighting strategies: pre-log weighting (weighted sum of energy bin counts), post-log weighting (weighted sum of line integrals), and MD weighting (weighted sum of basis material thicknesses, which is equivalent to virtual monoenergetic images [VMIs]). These expressions only contain energy bin counts from PCD measurements. We used a realistic PCD energy response model to simulate the detected bin counts and conducted Monte Carlo simulations of different contrast tasks and phantoms to evaluate the projection- and image-domain CNR performance of these energy-weighting strategies. Additionally, the total counts method (a special case of pre-log weighting with unity weights) was included for comparison. We also conducted Gammex head and body phantom scans on an edge-on-irradiated silicon PCCT prototype to evaluate the image-domain CNR performance of these energy-weighting strategies. The results show that pre-log, post-log, and MD weighting strategies generate approximately equal projection-domain maximum achievable CNR, with a difference of less than 2%, and outperform the total counts method. These three energy-weighting strategies also generate approximately equal image-domain maximum CNR when the contrast task is located at the center of a homogeneous phantom. Pre-log weighting generates the highest image-domain CNR for an off-center contrast task location or inhomogeneous phantoms while also outperforming the total counts method. We derived the expression of projection-domain maximum achievable CNR using three energy-weighting strategies. Our results suggest that using pre-log weighting strategies enables fast grayscale CT image generation with high CNR from spectral PCD measurements for inhomogeneous phantoms and off-center region of interests (ROIs).
Read full abstract