Detecting intrusions in real-time within cloud networks presents a multifaceted challenge involving intricate processes such as feature representation, intrusion type classification and post-processing procedures. Distributed Intrusion Detection Systems (DIDSs) constitute a complex landscape characterized by diverse contextual nuances, distinct functional advantages and limitations specific to deployment scenarios. Despite these challenges, DIDS offers immense potential for addressing evolving intrusion detection challenges through tailored contextual adaptations and unique functional advantages. Moreover, exploring the limitations associated with different deployment contexts facilitates targeted improvements and refinements, unlocking new avenues for innovation in intrusion detection technologies. Notably, deep learning (DL) integrated with blockchain technology emerges as a superior approach in terms of security, while bioinspired models excel in Quality of Service (QoS). These models demonstrate higher accuracy across various network scenarios, underscoring their efficacy in intrusion detection. Additionally, edge-based models exhibit high accuracy and scalability with reduced delay, complexity and cost in real-time network environments. The fusion of these models holds promise for enhancing classification performance across diverse attack types, offering avenues for future research exploration. This text conducts a comprehensive comparison of performance metrics, including accuracy, response delay, computational complexity, scalability and deployment costs. The proposed Novel DIDS Rank (NDR) streamlines model selection by considering these metrics, enabling users to make well-informed decisions based on multiple performance aspects simultaneously. This unified ranking approach facilitates the identification of DIDS that achieves high accuracy and scalability while minimizing response delay, cost and complexity across varied deployment scenarios.
Read full abstract