It is significant to study the mechanical properties of hot dry rock (HDR) for the development of deep geothermal energy. At present, the creep behavior of granite under real-time high temperature is not fully understood. The creep behavior of granite at 25 ∼ 800°C was investigated by real-time high-temperature uniaxial compression and graded load creep tests, and the thermal damage mechanism of granite was studied by scanning electron microscopy (SEM) experiments. The paper systematically analyzes the evolution of mechanical indexes such as uniaxial compressive strength (UCS), elastic modulus, creep deformation, steady creep rate and long-term strength of granite under thermal-force coupling. The results show that the UCS and elastic modulus of granite increase with increasing temperature in the range of 25 ∼ 200 °C, and decrease with increasing temperature in the range of 200 ∼ 800 °C. The damage speed of granite is the fastest in the temperature range of 400 ∼ 600 °C. The steady creep rate of granite increases with the increase of temperature and stress level. The ratio of long-term strength to UCS decreases with increasing temperature, from 93.6% at 25 °C to 73.2% at 800 °C. The research results provide relevant thermal damage mechanical parameters and theoretical basis for the development of HDR.
Read full abstract