Fiber optic surface plasmon resonance (FO-SPR)-based biosensors have emerged as powerful tools for biomarker detection due to their ability for real-time analysis of biomolecular interactions, cost-effectiveness, and user-friendliness. However, as (FO-)SPR signals are determined by the mass of the target molecules, the detection of low-molecular-weight targets remains challenging and currently requires tedious labeling and preparation steps. Therefore, in this work, we established a new concept for low-molecular-weight target detection by implementing duplexed aptamers on an FO-SPR sensor. In this manner, we enabled one-step competitive detection and could achieve significant signals, independent of the weight of the target molecules, without requiring labeling or preprocessing steps. This was demonstrated for the detection of a small molecule (ATP), protein (thrombin), and ssDNA target, thereby reaching detection limits of 72 μM, 36 nM, and 30 nM respectively and proving the generalizability of the proposed bioassay. Furthermore, target detection was successfully achieved in 10-fold diluted plasma, which demonstrated the applicability of the assay in biologically relevant matrices. Altogether, the developed one-step competitive FO-SPR bioassay opens up possibilities for the detection of low-molecular-weight targets in a fast and straightforward manner.
Read full abstract