Robot acceptance is rapidly increasing in many different industrial applications. The advancement of production systems and machines requires addressing the productivity complexity and flexibility of current manufacturing processes in quasi-real time. Nowadays, robot placement is still achieved via industrial practices based on the expertise of the workers and technicians, with the adoption of offline expensive software that demands time-consuming simulations, detailed time-and-motion mapping activities, and high competencies. Current challenges have been addressed mainly via path planning or robot-to-workpiece location optimization. Numerous solutions, from analytical to physical-based and data-driven formulation, have been discussed in the literature to solve these challenges. In this context, the machine learning approach has proven its superior performance. Nevertheless, the industrial environment is complex to model, generating extra training effort and making the learning procedure, in some cases, inefficient. The industrial problems concern workstation productivity; path-constrained minimal-time motions, considering the actuator’s torque limits; followed by robot vibration and the reduction in its accuracy and lifetime. This paper presents a procedure to find the robot base location for a prescribed task within the robot’s workspace, complying with multiple criteria. The proposed hybrid procedure includes analytical, physical-based, and data-driven modeling to solve the optimization problem. The contribution of the algorithm, for a given user-defined task, is the search for the best robot base location that enables the target points, maximizing the manipulability, avoiding singularities, and minimizing energy consumption. Firstly, the established method was verified using an anthropomorphic robot that considers different levels of a priori kinematics and system dynamics knowledge. The feasibility of the proposed method was evaluated through various simulations for small- and medium-sized robots. Then, a commercial offline program was compared, considering three scenarios and fourteen robots demonstrating an energy reduction in the 7.6–13.2% range. Moreover, the unknown joint dependency in real robot applications was investigated. From 11 robot positions for each active joint, a direct kinematic was appraised with an automatic DH scheme that generates the 3D workspace with an RMSE lower than 65.0 µm. Then, the inverse kinematic was computed using an ANN technique tuned with a genetic algorithm showing an RMSE in an S-shape task close to 702.0 µm. Finally, three experimental campaigns were performed with a set of tasks, repetitions, end-effector velocity, and payloads. The energy consumption reduction was observed in the 12.7–22.9% range. Consequently, the proposed procedure supports the reduction in workstation setup time and energy saving during industrial operations.