The heat exposure and white noise can induce damage on reproductive organs. The main objective of this study is to observe, if betanin administration could ameliorate oxidative stress, apoptosis and inflammation in testis of rodents following noise and scrotal hyperthermia exposure. Wistar rats were divided into 6 groups; control, betanin, noise, hyperthermia and two treatment groups. Scrotal hyperthermia model was performed by heat exposure of rat testicular (43 °C) for 15 min and 3 times per weeks for 14 days. Noise induction model was done following exposure of rats with 100-dB noise level for 14 days and 8 h daily similar to real exposure condition in human. Betanin was administrated at the sub-effective dose (15 mg/kg) by gavage route for 4 weeks (5 times a week) to male rats. The animals were euthanized and testis were dissected and stored at −80 °C. Then, the oxidative stress biomarkers (MDA and GSH), apoptosis (cytochrome c & Annexin V), and inflammatory cytokines (TNF-α & IL-6) were measured by the real time polymerase chain reaction (RT-PCR) of testis collected samples. The data output demonstrates the impact of noise and hyperthermia in testicular toxicity induction by mitigating oxidative damage, apoptosis and inflammatory mediators. Following treatment with 15 mg/kg per day of betanin, lipid peroxidation and GSH content have been modulated, and TNF-α and IL-6 gene expression has been declined. Our results revealed that in Wistar rats, betanin displays protective effects against noise and scrotal hyperthermia-induced acute testicular toxicity through the inhibition of oxidative stress, apoptosis, and inflammation.