This study aimed to investigate the changes in ocular refraction and pupillary diameter during fixation on augmented reality (AR) images using a Maxwellian display. Twenty-two healthy young volunteers (average age, 20.7 ± 0.5 years) wore a Maxwellian display device in front of their right eye and fixated on an asterisk displayed on both a liquid-crystal display (real target) and a Maxwellian display (AR target) for 29 seconds (real as a baseline for 3 seconds, AR for 13 seconds, and real for 13 seconds) at distances of 5.0, 0.5, 0.33, and 0.2 meters. A binocular open-view autorefractometer was used to measure the ocular refraction and pupillary diameter of the left eye. Accommodative (5.0 meters, 0.28 ± 0.29 diopter [D]; 0.5 meter, -0.12 ± 0.35 D; 0.33 meter, -0.43 ± 0.57 D; 0.2 meter, -1.20 ± 0.82 D) and pupillary (5.0 meters, 0.07 ± 0.22 mm; 0.5 meter, -0.08 ± 0.17 mm; 0.33 meter, -0.16 ± 0.20 mm; 0.2 meter, -0.25 ± 0.24 mm) responses were negative when the real target distances were farther away. The accommodative response was significantly and positively correlated with the pupillary response during fixation on the AR target (R2 = 0.187, P < 0.001). Fixating on AR images using a Maxwellian display induces accommodative and pupillary responses. Accommodative responses depend on the distance between real objects. Overall, the Maxwellian display does not completely eliminate accommodation in real space.
Read full abstract