ABSTRACT Reactive brilliant red X-3B (RBRX-3B) wastewater is difficult to decolourise, not readily biodegradable, and large in quantity. Therefore, the efficient removal of RBRX-3B is crucial. In this paper, a green and efficient electrochemical-electro-Fenton system with Fe3O4-modified carbon felt bag cathode (ECEF-Fe3O4) was set up to degrade RBRX-3B wastewater. Experiments confirmed that the removal of RBRX-3B by ·OH or H2O2 is quite low, and RBRX-3B can be completely oxidised and degraded directly on the anode. Long-cycle experimental data further shows that the degradation efficiency of RBRX-3B on the anode is 100% at 70 min at the reaction rate constants (k) of 0.071 min−1 in ECEF-Fe3O4 while that of RBRX-3B on the cathode is only 16.8 ± 0.9%. The generation of ·OH is mainly catalysed through the internal cycling of Fe3+/Fe2+ within Fe3O4 on the cathode, and the generation and annihilation of ·OH on the cathode enhance the oxidation efficiency of the anode, achieving the green and effective removal of RBRX-3B by the anode in ECEF-Fe3O4.
Read full abstract