The first example of applying salicylaldehyde derivatives, as well as coumarin with the formyl group at the C8 position in its structure, as carbonyl partners in a three-component Passerini reaction, is presented. As a result of research on the conditions of the Passerini reaction, the important role of the hydroxyl group in the salicylaldehyde used in the course of the multicomponent reaction was revealed. When an aldehyde with an unprotected hydroxyl group is used, only two-component α-hydroxy amide products are obtained. In contrast, the use of acylated aldehyde results in three-component α-acyloxy amide products with high efficiency. The developed protocol gives access to structurally diversified peptidomimetics with good yield. The compounds were also evaluated as antimicrobial agents against selected strains of nosocomial pathogenic bacteria. The structure-activity relationship revealed that inhibitory activity is strongly related to the presence of the trifluoromethyl group (CF3) or the methyl group at the C4 position in an unsaturated lactone ring of the coumarin scaffold. MIC and MBC studies were carried out on eight selected pathogenic bacteria strains (Gram-positive pathogenic Staphylococcus aureus strain (ATCC 23235), as well as on Gram-negative E. coli (K12 (ATCC 25404), R2 (ATCC 39544), R3 (ATCC 11775), and R4 (ATCC 39543)), Acinetobacter baumannii (ATCC 17978), Pseudomonas aeruginosa (ATCC 15442), and Enterobacter cloacae (ATCC 49141) have shown that the tested compounds show a strong bactericidal effect at low concentrations. Among all agents investigated, five exhibit higher antimicrobial activity than those observed for commonly used antibiotics. It should be noted that all the compounds tested showed very high activity against S. aureus, which is the main source of nosocomial infections that cause numerous fatalities. Additionally, the cytotoxicity of sixteen derivatives was measured with the use of the MTT test on BALB/c3T3 mouse fibroblast cell lines. The cytotoxicity studies revealed that the tested substances exert a similar or lower effect on cell proliferation than that observed for commonly used antibiotics within the range of therapeutic doses. A parallel MTT assay using ciprofloxacin, bleomycin, and cloxacillin showed that these antibiotics are more cytotoxic when tested in mammalian cells, and cell viability is in the range of 85.0-89.9%. Furthermore, we have shown that the studied coumarin-based peptidomimetics, depending on their structural characteristics, are nonselective and act efficiently against various Gram-positive and Gram-negative pathogens, which is of great importance for hospitalised patients.