Current research suggests that menstruating female athletes might be at greater risk of musculoskeletal injury in relation to hormonal changes throughout the menstrual cycle. A separate body of work suggests that spatial cognition might also fluctuate in a similar manner. Changes in spatial cognition could, in theory, be a contributing risk factor for injury, especially in fast-paced sports that require precise, millisecond accuracy in interactions with moving objects in the environment. However, existing theories surrounding causes for increased injury risk in menstruating females largely focus on biomechanical mechanisms, with little consideration of possible cognitive determinants of injury risk. Therefore, the aim of this proof-of-principle study was to explore whether menstruating females exhibit fluctuations in cognitive processes throughout their cycle on a novel sport-oriented cognitive test battery, designed to measure some of the mental processes putatively involved in these sporting situations.A total of 394 participants completed an online cognitive battery, a mood scale and a symptom questionnaire twice, 14 days apart. After exclusions, 241 eligible participants were included in the analyses (mean: 28 ± 6 years) (male = 96, female(menstruating) = 105, female(contraception) = 47). Cycle phase for menstruating females was based on self-reported information. The cognitive battery was designed to measure reaction times, attention, visuospatial functions (including 3D mental rotation) and timing anticipation. Three composite scores were generated using factor analysis with varimax rotation (Errors, Reaction Time, Intra-Individual Variability). Mixed model ANOVAs and repeated measures ANOVAs were performed to test for between and within-subject effects.There was no group difference in reaction times and accuracy between males and females (using contraception and not). However, within subject analyses revealed that regularly menstruating females performed better during menstruation compared to being in any other phase, with faster reaction times (10ms c.ca, p < .01), fewer errors (p < .05) and lower dispersion intra-individual variability (p < .05). In contrast they exhibited slower reaction times (10ms c.ca, p < .01) and poorer timing anticipation (p < .01) in the luteal phase, and more errors in the predicted ovulatory phase (p < .01). Self-reported mood, cognitive and physical symptoms were all worst during menstruation (p < .01), and a significant proportion of females felt that their symptoms were negatively affecting their cognitive performance during menstruation on testing day, which was incongruent with their actual performance.These findings suggest that visuospatial and anticipatory processes may fluctuate throughout the menstrual cycle in the general population, with better performance during the menstrual phase and poorer performance during the luteal phase. If these extend to associations between phase-specific cognitive performance and injury incidence, they would support a cognitive theory of determinants of injury risk in cycling female athletes, opening an opportunity to develop mitigation strategies where appropriate.
Read full abstract