Chlorination of ammonia or chloramine-containing waters induces breakpoint chlorination reactions, producing a hydroxyl radical (•OH), but enhances the formation of undesirable N-nitrosamines. The prevailing view attributes •OH formation to a nitrosyl intermediate derived from the hydrolysis of dichloramine, but this pathway is unlikely at neutral or acidic pH. This study reveals a novel mechanism where •OH is generated via interactions between trichloramine (NCl3) and dichloramine (NHCl2), which also form nitrosation agents. Our experiments demonstrated that the NCl3-NHCl2 interaction degrades micropollutants with kinetics 2-3 times faster than breakpoint chlorination. Using electron paramagnetic resonance, we detected •OH in the NCl3-NHCl2 reaction. Micropollutant removal was unimpaired under low dissolved oxygen (O2(aq)) conditions, aligning with negligible O2(aq) changes during the NCl3-NHCl2 reaction and suggesting O2(aq) does not participate in •OH formation. Using benzene as a probe in 18O-labeled H2O, we confirmed water contributes to the oxygen source of •OH in NCl3-NHCl2 interactions, through which parallel reactions occur, leading to the formation of one mole of •OH alongside 1.92 mol of N2. A kinetic model developed in this study accurately predicted •OH and N2 and demonstrated the NCl3-NHCl2 interaction as the primary pathway for •OH formation in breakpoint chlorination, providing new insights into breakpoint chemistry.
Read full abstract