Abstract The objective of this article is to examine the available evidence of intra-plate tectonic episodes of “Grenvillian-type age”, affecting the South-American continent, assessing their possible causal correlation with the tectonic processes occurring within the orogenic belts active at their margins. For the Amazonian Craton, the active margin is represented by the Rondonian-San Ignacio and Sunsas belts. However, active margins of similar age are not recognized for the Sao Francisco and the Rio de La Plata Cratons, and the intra-plate events over them could be reflections of the Kibaran, Irumide or Namaqua orogenic collisions in Africa. Grenvillian-type age events over the Amazonian Craton can be described in four different aspects: shearing and tectonic reactivation along zones of weakness, cratogenic granitic magmatism, alkaline ring complexes, and pervasive regional heating in some localized regions. The first of them may reflect the compressional stresses at active margins, however the others may have different origins. Within the type-region of the K’Mudku tectono thermal episode, mylonites and pseudotachylites cut across the regional granitoid and metamorphic rocks. These shear belts developed under low-to-moderate temperature conditions, that induced resetting of K–Ar and Rb–Sr mineral ages. In the Sao Francisco Craton, extensional and compressional events of Grenvillian-type age are well registered by the structural features exhibited by the sedimentary rocks of the Espinhaco Supergroup. For example, in Bahia state, an Appalachian-style structure is observed, with large synclines and anticlines extending along hundreds of kilometers. The major difference between the Amazonian and the Congo-Sao Francisco Cratons is related to heat originated from the Earth’s interior. Amazonia exhibits very large areas heated up to 350–400 °C, where the K’Mudku thermo-tectonic episodes were detected. In addition, Amazonia comprises a large amount of cratogenic granitic intrusions, and some alkalic complexes of Mesoproterozoic age, whose origin could be attributed, at least partially, to deeper sources of heat. This is not reported for the Sao Francisco Craton, and also for its African counterpart, the Congo Craton. Moreover, the Grenvillian-type age intra-plate features over South America demonstrate that while many cratonic fragments were colliding to build Rodinia, rifting was already occurring in parts of the Amazonian and the Congo-Sao Francisco Cratons.
Read full abstract