In this paper, we present a design and optical simulation of a novel linear Fresnel lens. The lens can be applied to a concentrator photovoltaic (CPV) system as a primary optical element (POE) to increase the concentration ratio and improve the uniformity of irradiance distribution over the receiver. In addition, the CPV system can use the proposed lens as a concentrator without involving a secondary optical element (SOE). The designed lens, which is a combination of two linear Fresnel lenses placed perpendicular to each other, can collect and distribute the direct sunlight on two dimensions. The lens is first designed in the MATLAB program, based on the edge ray theorem, Snell’s law, and the conservation of the optical path length, and then drawn in three dimensions (3D) by using LightToolsTM. Furthermore, in order to optimize the structure and investigate the performance of the lens, the ray tracing and the simulation are also performed in LightToolsTM. The results show that the newly designed lens can achieve a high concentration ratio of 576 times, a high optical efficiency of 82.4%, an acceptable tolerance of 0.84°, and high uniform irradiance of around 77% for both horizontal and vertical investigation lines over the receiver.
Read full abstract