We present the adiabatic theory of dissipative solitons (DS) of complex cubic-quintic nonlinear Ginzburg–Landau equation (CQGLE). Solutions in the closed analytical form in the spectral domain have the shape of Rayleigh–Jeans distribution for a positive (normal) dispersion. The DS parametric space forms a two-dimensional (or three-dimensional for the complex quintic nonlinearity) master diagram connecting the DS energy and a universal parameter formed by the ratio of four real and imaginary coefficients for dissipative and non-dissipative terms in CQGLE. The concept of dissipative soliton resonance (DSR) is formulated in terms of the master diagram, and the main signatures of transition to DSR are demonstrated and experimentally verified. We show a close analogy between DS and incoherent (semicoherent) solitons with an ensemble of quasi-particles confined by a collective potential. It allows applying the thermodynamical approach to DS and deriving the conditions for the DS energy scalability.
Read full abstract