This paper proposes a drone-assisted NOMA communication system equipped with a reconfigurable intelligent surface (RIS). Given the Line-of-Sight nature of the Air-to-Ground link, a more realistic Rician fading environment is chosen for the study of system performance. The user’s outage performance and secrecy outage probability of the RIS-UAV-assisted NOMA downlink communication under the Rician channels are investigated. Jointly considering the Line-of-Sight and Non-Line-of-Sight links, the closed-form expressions of each user’s outage probability are derived by approximating the composite channels as Rician distributions to characterize the channel coefficients of the system’s links. Considering the physical layer security in the presence of the eavesdropper, the secrecy outage probability of two users is further studied. The relationship between the system outage performance and the Rician factor of the channel, the number of RIS elements, and other factors are analyzed. The results of this study show that compared with Rayleigh fading, the Rician fading is more practical with the actual Air-to-Ground links; the user’s outage probability and the secrecy outage probability are lower over the Rician channels. The number of RIS elements and the power allocation factor by the base station for the users are inversely proportional to the user’s outage probability, and RIS element number, path loss index, and distance factor also have a greater impact on the outage probability. Compared with OMA, NOMA has a certain enhancement to the system performance.
Read full abstract