food-producing animals harbour pathogenic and antibiotic resistant bacteria which can be transmitted to humans. Resistance to carbapenems may complicate treatment resulting to debilitating consequences. This study aimed at determining the susceptibility of Enterobacteriaceae to carbapenems and to compare the resistant patterns of E. coli strains isolated from clinical and zoonotic sources. this was a cross-sectional study involving patients presenting at the Bamenda Regional Hospital and abattoir samples. Clinical samples (faeces and urine) and zoonotic samples (cattle faeces) were cultured and isolates identified using API-20E. Enterobacteriaceae isolates were tested for their susceptibility to Carbapenems. The susceptibility of E. coli was tested against eight antibiotics on Mueller Hinton agar. Data was analysed using SPSS version 20. Enterobacteriaceae isolates from clinical specimen showed susceptibility of 93.3% to carbapenems. Out of 208 isolates 14 (6.7%) were Carbapenem-resistant Enterobacteriaceae (CRE) while 30 (14.4%) showed intermediate resistance and 164 (78.9%) were susceptible. The predominant CRE were Proteus (7/16, 43.8%), Providencia (3/15, 20.0%) and E. coli (4/60, 6.7%) with E. coli being the most clinically significant CRE. Multiple drug resistance (MDR) was observed in 83% of E. coli isolates, with the highest resistance being against vancomycin (90, 81.8%), azithromycin (69, 62.7%) and doxycycline (68, 61.8%). Clinical isolates were significantly (P<0.05) more resistant to azithromycin, trimethoprim-suphamethoxazole and gentamicin than zoonotic isolates. CRE were detected among isolates and a high rate of multiple drug resistance was observed among E. coli isolates. Proper antibiotic policies and good hygiene/sanitation measures may curb the development/spread of CRE and MDR E. coli.