Microbial self-healing cementitious materials have attracted widespread attention due to their targeted repair of cracks, but their practical application is limited by cost. In this study, self-healing mortar was prepared using recycled concrete fine aggregate as a cementitious material to investigate the effect of magnesium ions on crack repair, to explore the compatibility of self-healing components and cement, and to assess the cost and environmental impact of this self-healing mortar. The results showed that the mineralization efficiency was the highest at 31.1% with a Ca/Mg molar ratio of 3, and the 28 d crack repair rate reached 97.8%; yeast and peptones in the self-repairing system slowed down the rate of cement hydration, whereas magnesium chloride and calcium lactate facilitated the hydration reaction. The use of recycled concrete fine aggregate (RCA) reduces the cost of the self-repairing material and the CO2 emission, and improves the application of microbial self-healing cementitious materials potential.
Read full abstract