Species of Antarctomyces and Thelebolus (Thelebolaceae), primarily found in Antarctic environments, exhibit psychrophilic adaptations, yet their mitochondrial genomes have not been extensively studied. Furthermore, few studies have compared the mitochondrial genomes of psychrophilic, psychrotrophic, and mesophilic fungi. After successful sequencing and assembly, this study annotated the mitochondrial genomes of Antarctomyces psychrotrophicus CPCC 401038 and Thelebolus microsporus CPCC 401041. We also performed a comparative analysis with the previously characterized mitochondrial genomes of psychrotrophic and mesophilic fungi. The analysis revealed that nad4L was the most conserved gene across the mitochondrial genomes, characterized by its synonymous and non-synonymous substitution rates (Ks and Ka), genetic distance, and GC content and skew within the protein-coding genes (PCGs). Additionally, the mitochondrial genomes of psychrophilic and psychrotrophic fungi showed a higher proportion of protein-coding regions and a lower GC content compared to those of mesophilic fungi, underscoring the genetic basis of cold adaptation. Phylogenetic analyses based on these mitochondrial genes also confirmed the phylogenetic relationships of Thelebolaceae in the class Leotiomycetes. These findings advance our understanding of the phylogenetic relationships and evolutionary dynamics within the family Thelebolaceae, highlighting how different environmental temperatures influence fungal mitochondrial genomic structure and adaptation.