PurposeThis study aims to show the inconsistency of the approach to the development of artificial intelligence as an independent tool (just one more tool that humans have developed); to describe the logic and concept of intelligence development regardless of its substrate: a human or a machine and to prove that the co-evolutionary hybridization of the machine and human intelligence will make it possible to reach a solution for the problems inaccessible to humanity so far (global climate monitoring and control, pandemics, etc.).Design/methodology/approachThe global trend for artificial intelligence development (has been) was set during the Dartmouth seminar in 1956. The main goal was to define characteristics and research directions for artificial intelligence comparable to or even outperforming human intelligence. It should be able to acquire and create new knowledge in a highly uncertain dynamic environment (the real-world environment is an example) and apply that knowledge to solving practical problems. Nowadays artificial intelligence overperforms human abilities (playing games, speech recognition, search, art generation, extracting patterns from data etc.), but all these examples show that developers have come to a dead end. Narrow artificial intelligence has no connection to real human intelligence and even cannot be successfully used in many cases due to lack of transparency, explainability, computational ineffectiveness and many other limits. A strong artificial intelligence development model can be discussed unrelated to the substrate development of intelligence and its general properties that are inherent in this development. Only then it is to be clarified which part of cognitive functions can be transferred to an artificial medium. The process of development of intelligence (as mutual development (co-development) of human and artificial intelligence) should correspond to the property of increasing cognitive interoperability. The degree of cognitive interoperability is arranged in the same way as the method of measuring the strength of intelligence. It is stronger if knowledge can be transferred between different domains on a higher level of abstraction (Chollet, 2018).FindingsThe key factors behind the development of hybrid intelligence are interoperability – the ability to create a common ontology in the context of the problem being solved, plan and carry out joint activities; co-evolution – ensuring the growth of aggregate intellectual ability without the loss of subjectness by each of the substrates (human, machine). The rate of co-evolution depends on the rate of knowledge interchange and the manufacturability of this process.Research limitations/implicationsResistance to the idea of developing co-evolutionary hybrid intelligence can be expected from agents and developers who have bet on and invested in data-driven artificial intelligence and machine learning.Practical implicationsRevision of the approach to intellectualization through the development of hybrid intelligence methods will help bridge the gap between the developers of specific solutions and those who apply them. Co-evolution of machine intelligence and human intelligence will ensure seamless integration of smart new solutions into the global division of labor and social institutions.Originality/valueThe novelty of the research is connected with a new look at the principles of the development of machine and human intelligence in the co-evolution style. Also new is the statement that the development of intelligence should take place within the framework of integration of the following four domains: global challenges and tasks, concepts (general hybrid intelligence), technologies and products (specific applications that satisfy the needs of the market).