Background: Experimental research is required to provide guidelines for the use of domestic biodegradable membranes. Aim: To assess the swelling index and biodegradation rate of barrier membranes (non-collagen and collagen) for guided tissue regeneration in vitro, as well as their biocompatibility in vivo. Materials and Methods: The swelling index of two types of membranes was assessed after 24 h of exposure to phosphate-buffered saline (PBS) at different pH levels (6.50 and 7.37). The spontaneous degradation rate of the two types of membranes was assessed; changes in their weight following exposure to PBS at different pH levels (6.50 and 7.37) were measured at predetermined time points. Moreover, the biocompatibility of two membrane samples following subcutaneous implantation in B/D male mice was assessed. Results: The swelling index of non-collagen membranes was higher at neutral pH compared to acidic pH: 7.7 for pH 7.37 vs 7.2 for pH 6.50. For collagen membranes, the swelling index was pH-independent. There were no differences in membrane weight loss following exposure to PBS at pH 6.5 during 8 weeks. During the first two weeks, collagen membranes had a higher resorption rate at pH 7.37 than non-collagen membranes. Following subcutaneous implantation of both membranes, histopathological specimens collected two weeks after surgery revealed the formation of foreign body granulomas with well-defined boundaries around the implants. Macrophages, monocytes, single giant cells of foreign bodies, and Pirogov–Langhans giant cells were detected, with the number gradually increasing over time. Conclusion: Non-collagen membranes had a larger swelling index than collagen membranes, which depended on pH. At pH 7.37, collagen membranes had a higher resorption rate during the first two weeks compared to non-collagen membranes. In vitro weight loss after 8 weeks was 20–30% for both membranes, regardless of pH. Subcutaneous implantation in mice confirmed the biocompatibility of the membranes. The biodegradation rate of non-collagen membranes was higher than that of collagen membranes.
Read full abstract