In the present study, we compared the in vivo neuroprotective efficacy of intraperitoneally administered tetracycline and minocycline to enhance the survival of retinal ganglion cells (RGCs) following unilateral axotomy of the adult rat optic nerve. We also examined the effects of the tetracycline drugs on the activation of retinal microglia. RGCs in retinal whole-mounts were visualized by retrograde labeling with fluorogold. The presence of activated microglia was confirmed immunohistochemically using OX-42 monoclonal antibodies. Optic nerve axotomy produced RGC death and increased activation of microglia. No significant RGC loss was seen prior to 5 days and approximately 50% and 80–90% cell loss occurred at 7 and 14 days, respectively. Examination of the effects of tetracycline and minocycline on RGC survival at 7 days post-axotomy, revealed increased numbers of RGCs in minocycline-treated animals (75% of non-axotomized control) compared with vehicle-only (52% of control) and tetracycline-treated (58% of control) animals. The densities of RGCs (RGCs/mm 2±S.D.) for control, vehicle-, tetracycline- and minocycline-treated axotomized animals were 1996±81, 1029±186, 1158±190 and 1497±312, respectively. The neuroprotective effect of minocycline seen at 7 days was transient, since RGCs present in minocycline-treated animals at 14 days post-axotomy (281±43, 14% of control) were not significantly different to vehicle-treated animals (225±47, 11% of control). OX-42 staining of activated retinal microglia was reduced in tetracycline- and minocycline-treated axotomized animals compared with axotomized animals receiving vehicle-only. These results demonstrate that systemic administration of the second-generation tetracycline derivative, minocycline, delays the death of axotomized RGCs by a mechanism that may be associated with inhibition of microglia activation. The neuroprotective efficacy of minocycline following optic nerve axotomy was superior to that of tetracycline.
Read full abstract