Fructose high-salt (FHS) diets increase blood pressure (BP) in an angiotensin II (Ang II)-dependent manner. Ang II stimulates aldosterone release, which, by acting on the mineralocorticoid receptor (MR), regulates Na + reabsorption by the aldosterone-sensitive distal nephron (ASDN). The MR can be transactivated by glucocorticoids, including those locally produced by 11β-HSD1. The epithelial sodium channel (ENaC) is a key transporter regulated by MRs. We hypothesized that fructose-induced salt-sensitive hypertension depends in part on abnormal activation of MRs in the ASDN with consequent increases in ENaC expression. We found that aldosterone-upregulated genes in mice ASDN, significantly overlapped with 74 genes upregulated by FHS in the rat kidney cortex (13/74; p≤1x10 -8 ), and that these 74 genes are prominently expressed in rat ASDN cells. Additionally, the average z-score expression of mice-aldosterone-upregulated genes is highly correlated with FHS compared to glucose high-salt (GHS) in the rat kidney cortex (Pearson correlation; r=0.66; p≤0.005). There were no significant differences in plasma aldosterone concentrations between the FHS and GHS. However, 11β-HSD1 transcripts were upregulated by FHS (log 2 FC=0.26, p≤0.02). FHS increased BP by 23±6 mmHg compared to GHS, and blocking MRs with eplerenone prevented this increase. Additionally, inhibiting ENaC with amiloride significantly reduced BP in FHS from 148±6 to 134±5 mmHg (p≤0.019). Compared to GHS, FHS increased total and cleaved αENaC protein by 89±14 % (p≤0.03) and 47±16 % (p≤0.01) respectively. FHS did not change β- or γ-subunit expression. These results suggest that fructose-induced salt-sensitive hypertension depends, in part, on abnormal Na + retention by ENaC, resulting from the activation of MRs by glucocorticoids.
Read full abstract