BackgroundRE1 Silencing Transcription factor (REST) corepressor 1 (RCOR1) has been reported to orchestrate neurogenesis, while its role in cerebral palsy (CP) remains elusive. Besides, RCOR1 can interact with Endothelin-1 (EDN1), and EDN1 expression is related to brain damage. Therefore, this study aimed to explore the effects of RCOR1/EDN1 on brain damage during the progression of CP. MethodsCP rats were established via hypoxia–ischemia insult, and injected with lentivirus-RCOR1, followed by examination of brain pathological conditions. The RCOR1 and EDN1 interaction was recognized using hTFtarget. Healthy rat cortical neuron cells received interference of RCOR1/EDN1 expression, and underwent oxygen-glucose deprivation/reoxygenation (OGD/R) treatment, after which phenotypic and molecular assays were conducted through the biochemical method, qRT-PCR and/or western blot. ResultsRCOR1 was low-expressed but EDN1 was high-expressed in CP model rats and OGD/R-treated neurons. RCOR1 overexpression ameliorated rat neurobehaviors, alleviated brain pathological conditions, reduced TUNEL-positive cells, decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) level and repressed EDN1 expression in the brains of CP model rats. In neurons, RCOR1 overexpression counteracted OGD/R-induced viability decrease, reduction of the levels of RCOR1, SOD, Bcl-2, caspase-3, p-Akt/Akt and p-GSK-3β/GSK-3β, and elevation of the levels of EDN1, ROS, Bax, and cleaved caspase-3, while EDN1 overexpression did contrarily on these events. Moreover, there was a negative interplay between RCOR1 overexpression and EDN1 overexpression in OGD/R-induced neurons. ConclusionRCOR1 ameliorates neurobehaviors and suppresses neuronal apoptosis and oxidative stress in CP through EDN1 targeting-mediated upregulation of Akt/GSK-3β.
Read full abstract