Corticosterone (CORT)-induced oxidative stress and neurotoxicity can cause neuronal dysfunction and mental disorders. In the present study, we investigated the effects and mechanism of the HP-20 resin fraction of the water extract of Vaccinium bracteatum leaves (NET-D1602) and its bioactive compound p-coumaric acid on neuronal cell damage in SH-SY5Y cells and primary culture of rat cortical cells. NET-D1602 and p-coumaric acid significantly improved cell viability in CORT-induced neurotoxicity in SH-SY5Y cells and primary cultures of rat cortical cells, and increased the activities of antioxidant enzymes (superoxide dismutase and catalase) against CORT-induced neurotoxicity in SH-SY5Y cells. NET-D1602 and p-coumaric acid increased the phosphorylation levels of ERK1/2 and cAMP response element-binding protein (CREB) in cortical neurons. In addition, CREB phosphorylation by NET-D1602 and p-coumaric acid was dramatically reversed by PKA, c-Raf/ERK, PI3K, and mTOR inhibitors. Lastly, we demonstrated the neuroprotective effects of NET-D1602 (3 and 10 μg/mL) and p-coumaric acid (3 and 10 μM) via increased CREB phosphorylation in CORT-induced neurotoxicity mediated via the ERK1/2, Akt, and mTOR pathways. These results suggest that p-coumaric acid is a potential neuroprotective component of NET-D1602, with the ability to protect against CORT-induced neurotoxicity by regulating ERK1/2, Akt, and mTOR-mediated CREB phosphorylation.
Read full abstract