As challenges in precious and base metal exploration intensify due to the diminishing availability of high-grade ore deposits, rising demand, energy costs, and stricter regulations towards net-zero carbon activities, advanced techniques to enhance exploration efficiency are becoming increasingly critical. This study demonstrates the effectiveness of quantitative X-ray diffraction (QXRD) with Rietveld refinement, coupled with multivariate statistical analysis (including agglomerative hierarchical clustering, principal component analysis, and fuzzy analysis), in characterizing the complex mineralogy of strata-bound volcanic-associated limestone-skarn Zn-Pb-Ag-(Cu-Au)-type sulphide deposits (SVALS). Focusing on 113 coarse rejects from the Gumsberg project located in the Bergslagen mining district in central Sweden, the research identified five distinct mineralogical clusters corresponding to polymetallic base metal sulphide mineralization, its proximal alteration zones, and variably metamorphosed host rocks. The results reveal significant sulphide mineralization, ranging from disseminated to massive occurrences of sphalerite, pyrrhotite, pyrite, and galena, with trace amounts of secondary minerals like anglesite in certain samples indicating weathering processes. The study also identifies rare minerals such as armenite, often overlooked in traditional geological logging. These findings underscore the potential of QXRD to enhance resource estimation, optimize exploration strategies, and contribute to more efficient and sustainable mineral exploration programs. The accuracy of QXRD was cross-validated with geological logs and geochemical data, confirming its reliability as a mineralogical discrimination tool.