Background: The therapeutic ability and application of antifungal peptide (APs) are limited by their physico-chemical and biological properties, the nano-liposomal encapsulation would improve the in vivo circulation and stability. </P><P> Objective: To develop a long-circulating liposomal delivery systems encapsulated APs-CGA-N12 with PEGylated lipids and cholesterol, and investigated through in vivo pharmacokinetics. Methods: The liposomes were prepared and characterized, a rapid and simple liquid chromatographytandem mass spectrometry (LC-MS/MS) assay was developed for the determination of antifungal peptide in vivo, the pharmacokinetic characteristics of APs liposomes were evaluated in rats. Results: Liposomes had a large, unilamellar structure, particle size and Zeta potential ranged from 160 to 185 nm and -0.55 to 1.1 mV, respectively. The results indicated that the plasma concentration of peptides in reference solutions rapidly declined after intravenous administration, whereas the liposomeencapsulated ones showed slower elimination. The AUC(0-∞) was increased by 3.0-fold in liposomes in comparison with standard solution (20 mg·kg-1), the half-life (T1/2) was 1.6- and 1.5-fold higher compared to the reference groups of 20 and 40 mg·kg-1, respectively. Conclusion: Therefore, it could be concluded that liposomal encapsulation effectively improved the bioavailability and pharmacokinetic property of antifungal peptides.