When the dual rotor system of the aircraft engine is operating, the mass eccentricity of the power turbine rotor and the misalignment of the shaft coupling or the bearing will cause too large vibration of the rotor; this vibration leads to the rub-impact between the rotor and the casing. The power turbine rotor from the dual rotor system is taken as the research object in this paper. Considering the misalignment, the resulting rub-impact faults, the imbalance of rotor and the disk offset, the equation of motion for the system is developed according to the Lagrangian Equation, and then the Range-Kutta Method is adopted to solve the equation. The influence of the key parameters such as the rotating speed, the misalignment angle and the rub-impact clearance on the dynamics of the system is studied; the finite element analysis was carried out to validate the correctness of the theoretical modeling method. The results show that the rub-impact increases the stiffness of the system; the Hopf bifurcation occurs in the misalignment and rub-impact coupling system; the vibrational stability near the half of the switching speed slumps with the increase of the misalignment angle; with increasing of the stiffness, the number of the chaotic zone increases, and the range of the chaos is widening; enlarging the rub-impact clearance is beneficial to reduce the degree of the rub-impact system and enhance the stability of the system.
Read full abstract