SS 316L, a low-carbon 316 Stainless Steel, has been used to manufacture swivel mechanisms for paraplegic patients, but its weight is relatively high compared to a few materials in its range of properties. Aluminum alloy 6061 and Titanium alloy (Ti6Al4V) offer lightweight and incredible strength-to-weight ratio, hence their use for medical, aerospace, and automotive applications. This study, therefore, seeks a replacement for SS 316L. A 3D model of a swivel mechanism was developed to compare the performance of the swivel mechanism made with SS 316L, AA 6061, and Ti6Al4V. The kinematic analysis of the mechanism based on a range of weights: 1kN, 1.1 kN, 1.2 kN, 1.3 kN, 1.4 kN, and 1.5 kN was carried out to generate the inputs for the simulation. The 3D model was made with SolidWorks, and the results of the kinematic analysis were used to define the simulation parameters for the mechanism. Two scenarios generated depicted the full collapse of the mechanism and the full extension. The results showed that AA 6061 and Ti6Al4V outperformed SS 316L with higher yield strength and factor of safety. Therefore, swivel plates made with AA 6061 and Ti6Al4V have higher yield strength than those made with SS 316L, adding to the advantage that they have a higher strength-to-weight ratio. From this analysis and known knowledge of the cost of these materials, the optimal replacement considering cost with yield strength is AA 6061. However, Ti6Al4V is a better alternative for the strength-to-weight ratio for SS 316L.
Read full abstract