The chemical reactivity of trace elements (TEs) in dusts from bitumen mining, upgrading and related industrial activities in the Athabasca Bituminous Sands region (ABS), Alberta, Canada, was evaluated using the acid-soluble fraction of snow. Samples were collected at 14 sites along the Athabasca River (AR) and its tributaries, and at 3 remote locations. Following metal-free, ultra-clean procedures for processing and analysis, samples were leached with nitric acid (pH < 1), filtered (<0.45 μm), and analyzed using ICP-MS. Insoluble particles (>0.45 μm) were examined using SEM-EDS. Along the river, acid-soluble concentrations of TEs varied by 6 orders of magnitude, from 1 mg/L (Al) to less than 1 ng/L (Tl). Conservative (Al, Y, La, Th) and mobile (Li, Be, Cs, Sr) lithophile elements, those enriched in bitumen (V, Ni, Mo), and potentially toxic chalcophile elements (As, Cd, Pb, Sb, Tl) showed considerable spatial variation. Normalizing the concentrations of TEs in samples collected near industry to the corresponding concentrations in snow from the reference site (UTK), resulted in enrichments of V and most of the lithophile elements. Dust reactivity, quantified as the ratio of acid-soluble to total concentrations, was less than 50% suggesting limited bioaccessibility. The large differences in behaviour between Cd and Pb versus Ni and V could be due to the occurrence of the former pair in carbonate or sulfide minerals, versus acid-insoluble petcoke particles for the latter couple. Spatial variations in the reactivity of TEs most likely reflect the range in diversity and chemical stability of dust particles, and variations in their abundance in primary source areas. The leaching conditions employed here are extreme (pH < 1) and intended to identify an upper limit of chemical reactivity, with far less dust dissolution expected when these dusts encounter natural waters of the area which range in pH from 4 to 8.
Read full abstract