We aimed to describe the prevalence and develop a model for prediction of radiographic vertebral fractures in a large random sample of postmenopausal Chinese women. We enrolled 1760 women from an age-stratified random sample of postmenopausal women in Beijing, China. The presence of vertebral fracture was assessed by semi-quantitative grading of lateral thoracolumbar radiographs, risk factors by interview, bone mineral density (BMD) of the proximal femur and lumbar spine by dual x-ray absorptiometry (DXA), and markers of bone turnover from a fasting blood sample. Associations of these factors were analyzed in logistic models and discrimination by areas of receiver operating characteristics curves (AUC). The prevalence of vertebral fracture, ranged from 13.4% ages 50 to 59years old to 58.1% at age 80years or older. Older age, a history of non-vertebral fracture, lower femoral neck BMD T-score, body mass index (BMI), height loss, housework, and less than half an hour of outdoor activity were significantly associated with increased probability of having a vertebral fracture. A model with those seven factors had a similar AUC with or without BMD and performed better than a simple model with three factors. This study is from a true random sample of postmenopausal women in urban China with high response rate. The prevalence of vertebral fractures in postmenopausal women in Beijing increases from 13% under age 60 to over 50% by age 80years. A model with seven clinical risk factors with or without BMD is better than simple models and may guide the use of spine x-rays to identify women with vertebral fractures. More than half an hour of outdoor activity might correlate with lower risk of vertebral fracture in this population.