A variety of algorithms have been proposed to compute the NP-hard multi-state two-terminal reliability at demand level <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> (MS2TR <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> ). Most of the methods solve the problem in terms of two to three NP-hard sub-problems. The only existing method that computes MS2TR <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> without requiring all multi-state minimal paths or cuts <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a priori,</i> excluding the impractical complete enumeration method, and Doulliez & Jamoulle's popular but incorrect decomposition method, see P. Doulliez and E. Jamoulle, “Transportation networks with random arc capacities,” RAIRO, vol. 3, pp. 45-60, 1972, is the decomposition method proposed by Jane & Laih, see C.-C. Jane and Y.-W. Laith, “A practical algorithm for computing multi-state two-terminal reliability,” IEEE Trans. Reliability, vol. 57, pp. 295-302, 2008, recently. In contrast to Jane & Laih's method that computes MS2TR <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> in term of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> -flows, this paper presents a novel decomposition method that computes 1-MS2TR <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> in terms of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> -cuts. Contribution of the proposed method is that it is the first unique method that computes MS2TR <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> by way of cut sets without requiring all multi-state minimal paths or cuts a priori. An example illustrates the proposed algorithm. In addition, we make computational comparisons between the two algorithms in terms of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> -flows, and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> -cuts.
Read full abstract