This study explored the applicability of TRMM, TRMM nonlinear downscaling, and ANUSPLIN (ANU) interpolation of three different types of precipitation data to define regional-scale rainfall-triggered landslide thresholds. The spatial resolution of TRMM precipitation data was downscaled from 0.25° to 500 m by the downscaling model considering the relationship between humidity, NDVI, and numerous topographic factors and precipitation. The rainfall threshold was calculated using the rainfall intensity–duration threshold model. The calculation showed that TRMM downscaled precipitation data have better detection capability for extreme precipitation events than the other two, the TRMM downscaling threshold was better than the ANU interpolation, and the cumulative effective rainfall of TRMM downscaling was preferred as the macroscopic critical rainfall-triggered landslide threshold for the early warning of the Wudu. The predictive performance of the rainfall threshold of 50% was better than the other two (10% and 90%). When the probability of landslide occurrence was 50%, the TRMM downscaled threshold curve was given by I50=21.03×D−1.004. The authors also analyzed the influence of factors such as topography landform and soil type on the rainfall threshold of landslides in the study area. The rainfall intensity of small undulating mountains was higher than that of medium and large undulating mountains, and the rainfall intensity of landslides peaks at high altitude mountains of 3500–5000 m.
Read full abstract