Due to their huge socio-economic impacts and complex formation causes, extreme and continuous drought events have become the focus and nodus of research in recent years. In the midsummer (July–August) of 2022, a severe drought event occurred in the whole Yangtze River Basin (YRB), China. During that period, the precipitation in the upper, middle and lower reaches of the YRB dropped over 40% less than the 1961–2021 climatic mean, which had never happened previously. Furthermore, the temperature was the highest during 1961–2022. The record-breaking magnitude of less rainfall and high temperature directly led to the continuous development of this extreme drought event. An atmospheric moisture budget analysis revealed that the YRB midsummer rainfall anomaly was dominated by the anomalous powerful vertical moisture advection, which was derived from the strongest descending motion over the whole YRB in the 2022 midsummer during 1981–2022. The western Pacific subtropical high (WPSH) during the midsummer remained stronger, more westward and lasted longer than the climatic mean. As a result, the whole YRB was controlled by a positive geopotential height centre. Further evidence revealed that the anomalous subtropical zonal flow played a crucial role in inducing the extreme descent over the YRB. Moreover, the anomalous upper-tropospheric easterly flow over the YRB in 2022 is the strongest during 1981–2022, modulating the generation of the unprecedented descent anomaly over the YRB. The likelihood that an integrated connection of severe drought in East Asia and flood in West Asia and northwestern South Asia would increase when the extremely strong easterly anomalies in the upper troposphere emerged and induced descending adiabatic flow on the eastern sides of the Tibetan Plateau. The results of this study can provide scientific insights into the predictability of extreme drought events and provide ways to improve predictions.
Read full abstract