An accurate knowledge of the orientation, the tidal deformability, and the gravity field of a celestial body is fundamental to provide constraints on its internal structure. These quantities may be retrieved by processing radiometric tracking and altimetry data from a probe in orbit around such body. This paper presents a method to combine altimetry crossovers with two-way Doppler tracking observations at normal equation level, using the Bernese GNSS Software and the pyXover software library. This method was applied to a proposed 200km altitude orbiter around Callisto, a privileged destination for the upcoming phase of Solar System exploration. Enhancing “standard” Doppler tracking with altimetry generally benefited both orbit determination and a joint estimation of the orientation of the north pole and of planetary librations. The retrieval of low-degree gravity field parameters was also improved by the addition of altimetry data. However, the improvements on the estimated parameters were highly dependent on the characteristics of the simulation, e.g., the underlying topography roughness. Overall, combining radioscience with altimetry data accounted for a visible reduction of correlations among estimated parameters, while also allowing for a consistent estimation of the “vertical” Love number h2 along with gravity.
Read full abstract